Long term experience with polypropylene thermal insulation on subsea pipelines

www.bhrgroup.co.uk
Contents

• Introduction
 • Why insulate
• Use of Polypropylene Foam Insulation
• Qualification
• Application
• Installation
• Operation
• Conclusions
Functional requirements for thermal insulation

Provide corrosion protection for the lifetime of the coated steel flowline

Provide the required thermal insulation (U-value) for the lifetime of the flowline
Pipe steel types that have been insulated

- Carbon steel
- SMSS (super martensitic stainless steel) 13 % Cr
- Carbon steel with stainless steel liner (Bubi)
- Clad steel (carbon steel with metallurgically bonded stainless steel liner)
- Duplex stainless steels
Field joint types

<table>
<thead>
<tr>
<th>Field joint type</th>
<th>When used</th>
<th>Parent coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection moulded polypropylene</td>
<td>Reeling / S-lay / onshore / offshore tie-in</td>
<td>Polypropylene foam</td>
</tr>
<tr>
<td>Flame spray polypropylene with polypropylene half shells</td>
<td>Offshore tie-in and field joints</td>
<td>Polypropylene foam</td>
</tr>
<tr>
<td>Solid polyurethane</td>
<td>S-lay / Stalk tie in (reeling)</td>
<td>Polypropylene (low temperature applications) Polyurethane</td>
</tr>
</tbody>
</table>
Anode attachment – for cathodic protection and direct electric heating (DEH)
Five layer polypropylene foam system

- Polypropylene Outer Shield
- Polypropylene Foam
- Solid Polypropylene
- Polypropylene high temperature Adhesive
- High temperature Fusion Bonded Epoxy
- Steel pipe: 228.6 mm OD x 11.6mm x 13% Cr
Polypropylene foam insulated pipelines in Statoil

<table>
<thead>
<tr>
<th>Feature</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>First installation</td>
<td>1991</td>
</tr>
<tr>
<td>Length installed</td>
<td>784 000 m</td>
</tr>
<tr>
<td>Diameters insulated</td>
<td>200 – 500 mm / 8-20 “</td>
</tr>
<tr>
<td>Water depths</td>
<td>82 - 390 m</td>
</tr>
<tr>
<td>Design temperatures</td>
<td>65 – 155 °C</td>
</tr>
<tr>
<td>U-values</td>
<td>3 – 8 (W/m²K)</td>
</tr>
<tr>
<td>Highest thickness</td>
<td>78.3 mm</td>
</tr>
<tr>
<td>Installation methods</td>
<td>S-lay and reeling</td>
</tr>
</tbody>
</table>
Installed pipelines with polypropylene foam insulation in Statoil
Design temperatures for the subsea flowlines

Kristin
Water depth of installed pipelines
U-values (W/m²K) or coating thickness

Year

U-value (W/m²K) / Thickness (mm)
U-values for some of the flowlines

![Graph showing U-values over years]
Insulation application discrepancies

- Density outside the required specification
- Eccentric placement of steel pipe in foam
- Lack of bond between the three-layer coating and insulation
- Cracking of external weight coating
- Irregular outer surface from unstable process conditions
- Cracking of factory coating due to less flexible FBE
- Cracking of factory coating and PP field joint
- Cracking in coating at the spool base due to roller boxing
High temperature qualification – 155 C

- A temperature – time profile for the production from the reservoirs

- The flowlines were used as heat sinks to lower the well stream temperature to acceptable 132 °C for the risers and production facilities

- A close to solid PP insulation system

- Flow assurance based on direct electric heating (DEH)

- Special attention to anode connections to keep water away from SMSS surface
Field joints and installation

- Cracks in injection moulded polypropylene field joints
- Cracks in tie-in joints both injection moulded polypropylene and polyurethane
- Cracks in the parent insulation material
- Buckling of steel pipes in field joints due to strain concentration associated with the coating
- Cracks in connection with anode brackets
In-service experience – hydrogen cracking
In-service experience – polyurethane field joints
Flame spray polypropylene
Key to successful projects

- Direct involvement of own personnel with the pipe coater, i.e. increased internal knowledge base
- Quality issues has been solved between pipe coaters and end user
- All technical discussions has been solved between the end user and pipe coater
- High quality of the final deliveries
Conclusions

PP based foam has been the base case for most pipeline projects with insulation requirements since the first installation in 1991.

The system was further developed and qualified for high temperature applications through an active involvement with the coating system supplier.

The in-service operational experience after installation has been excellent.
Long term experience with polypropylene thermal insulation on subsea pipelines

Bjørn Melve, Dana Ali, Harald Thon, Kristian Haraldsen

Statoil ASA, Norway www.statoil.com
dal@statoil.com, bjme@statoil.com, hatho@statoil.com, krihar@statoil.com